Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; : e2308936, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054614

RESUMO

Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated blood pressure in the pulmonary arteries. Nitric oxide (NO) is a gaseous signaling molecule with potent vasodilator effects; however, inhaled NO is limited in clinical practice because of the need for tracheal intubation and the toxicity of high NO concentrations. In this study, inhalable NO-releasing microspheres (NO inhalers) are fabricated to deliver nanomolar NO through a nebulizer. Two NO inhalers with distinct porous structures are prepared depending on the molecular weights of NO donors. It is confirmed that pore formation can be controlled by regulating the migration of water molecules from the external aqueous phase to the internal aqueous phase. Notably, open porous NO inhalers (OPNIs) can deliver NO deep into the lungs through a nebulizer. Furthermore, OPNIs exhibit vasodilatory and anti-inflammatory effects via sustained NO release. In conclusion, the findings suggest that OPNIs with highly porous structures have the potential to serve as tools for PAH treatment.

2.
Nat Commun ; 14(1): 7687, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001080

RESUMO

Guided bone regeneration aided by the application of occlusive membranes is a promising therapy for diverse inflammatory periodontal diseases. Symbiosis, homeostasis between the host microbiome and cells, occurs in the oral environment under normal, but not pathologic, conditions. Here, we develop a symbiotically integrating occlusive membrane by mimicking the tooth enamel growth or multiple nucleation biomineralization processes. We perform human saliva and in vivo canine experiments to confirm that the symbiotically integrating occlusive membrane induces a symbiotic healing environment. Moreover, we show that the membrane exhibits tractability and enzymatic stability, maintaining the healing space during the entire guided bone regeneration therapy period. We apply the symbiotically integrating occlusive membrane to treat inflammatory-challenged cases in vivo, namely, the open and closed healing of canine premolars with severe periodontitis. We find that the membrane promotes symbiosis, prevents negative inflammatory responses, and improves cellular integration. Finally, we show that guided bone regeneration therapy with the symbiotically integrating occlusive membrane achieves fast healing of gingival soft tissue and alveolar bone.


Assuntos
Perda do Osso Alveolar , Periodontite , Humanos , Regeneração Tecidual Guiada Periodontal , Cicatrização/fisiologia , Gengiva , Membranas Artificiais , Regeneração Óssea/fisiologia
3.
Adv Sci (Weinh) ; 10(28): e2301609, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544923

RESUMO

With rapid urbanization and global population growth, the amount of wasted aluminum foil is significantly increasing. Most deformed and contaminated foil is difficult to recycle; hence, it is landfilled or incinerated, causing environmental pollution. Therefore, using aluminum foil waste for electricity may be conducive to addressing environmental problems. In this regard, various literatures have explored the concept of energy generation using foil, while a crumple ball design for this purpose has not been studied. Thus, a recycled foil-based crumpled ball triboelectric nanogenerator (RFCB-TENG) is proposed. The crumpled ball design can minimize the effects of contamination on foil, ensuring efficient power output. Moreover, owing to novel crumpled design, the RFCB-TENG has some outstanding characteristics to become a sustainable power source, such as ultralight weight, low noise, and high durability. By introducing the air-breakdown model, the RFCB-TENG achieved an output peak voltage of 648 V, a current of 8.1 mA cm3 , and an optimum power of 162.7 mW cm3 . The structure of the RFCB-TENG is systemically optimized depending on the design parameters to realize the optimum output performance. Finally, the RFCB-TENG operated 500 LEDs and 30-W commercial lamps. This work paves the guideline for effectively fabricating the TENG using waste-materials while exhibiting outstanding characteristics.

4.
ACS Nano ; 16(10): 17274-17288, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36129365

RESUMO

In nature, water is vital for maintaining homeostasis. Particularly, organisms (e.g., plant leaf, bird feather) exploit water fluidics for motions. Hydration-adaptive crystallization is the representative water-responsive actuation of biopolymers. This crystallization has inspired the development of intelligent human-robot interfaces. At the same time, it hinders the consistent adhesion of tissue adhesive. As hydration-adaptive crystallization is inevitable, the on-demand control of crystallization is desirable in the innovative biopolymeric biomedical systems. To this end, this study developed an amino acid-based technology to artificially up- or down-regulate the inevitable crystallization of silk fibroin. A case II diffusion model was constructed, and it revealed that the activity of polar amino acid is related to crystallization kinetics. Furthermore, the water dynamics study suggested that active amino acid stabilizes crystallization-triggering water molecules. As a proof-of-concept, we verified that a 30% increase in the activity of serine resulted in a 50% decrease in the crystallization rate. Furthermore, the active amino acid-based suppression of hydration-adaptive crystallization enabled the silk fibroin to keep its robust adhesion (approximately 160 kJ m-3) by reducing the water-induced loss of adhesive force. The proposed silk fibroin was demonstrated as a stable tissue adhesive applied on ex vivo porcine mandible tissue. This amino acid-based regulation of hydration-adaptive crystallization will pioneer next-generation biopolymer-based healthcare.


Assuntos
Bombyx , Fibroínas , Adesivos Teciduais , Humanos , Animais , Suínos , Fibroínas/química , Água/química , Bombyx/química , Aminoácidos , Serina , Seda/química
5.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683912

RESUMO

Nitric oxide (NO) plays a critical role as an important signaling molecule for a variety of biological functions, particularly inhibiting cell proliferation or killing target pathogens. To deliver active radical NO gaseous molecule whose half-life is a few seconds in a stable state, the design and development of effective exogenous NO supply nanocarriers are essential. Additionally, the delivery of desired drugs with NO can produce synergistic effects. Herein, we report a new approach that allows for the fabrication of dual ultrasound (US)/glutathione (GSH)-responsive perfluorocarbon (PFC) nanodroplets for the controlled release of model drug and passive release of safely incorporated NO. The approach centers on the synthesis of a disulfide-labeled amphiphilic block copolymer and its use as a GSH-degradable macromolecular emulsifier for oil-in-water emulsification process of PFC. The fabricated PFC nanodroplets are colloidally stable and enable the encapsulation of both NO and model drugs. Encapsulated drug molecules are synergistically released when ultrasound and GSH are presented, while NO molecules are passively but rapidly released. Our preliminary results demonstrate that the approach is versatile and can be extended to not only GSH-responsive but also other stimuli-responsive block copolymers, thereby allowing for the fabrication of broad choices of stimuli-responsive (smart) PFC-nanodroplets in aqueous solution for dual delivery of drug and NO therapeutics.

6.
Chem Eng J ; 446: 137054, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35601362

RESUMO

Viruses/bacteria outbreaks have motivated us to develop a fabric that will inhibit their transmission with high potency and long-term stability. By creating a metal-ion-rich surface onto polyester (PET) fabric, a method is found to inhibit hospital-acquired infections by immobilizing microorganisms on its surface. ZIF-8 and APTES are utilized to overcome the limitations associated with non-uniform distribution, weak biomolecule interaction, and ion leaching on surfaces. Modified surfaces employing APTES enhance ZIF-8 nucleation by generating a monolayer of self-assembled amine molecules. An in-situ growth approach is then used to produce evenly distributed ZIF-8 throughout it. In comparison with pristine fabric, this large amount of zinc obtained from the modification of the fabric has a higher affinity for interacting with membranes of microorganisms, leading to a 4.55-fold increase in coronavirus spike-glycoprotein immobilization. A series of binding ability stability tests on the surface demonstrate high efficiency of immobilization, >90%, of viruses and model proteins. The immobilization capacity of the modification fabric stayed unchanged after durability testing, demonstrating its durability and stability. It has also been found that this fabric surface modification approach has maintained air/vapor transmittance and air permeability levels comparable to pristine fabrics. These results strongly advocate this developed fabric has the potential for use as an outer layer of face masks or as a medical gown to prevent hospital-acquired infections.

7.
Adv Sci (Weinh) ; 9(8): e2105420, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35001517

RESUMO

The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.


Assuntos
Fibroínas , Atletas , Eletrodos , Fibroínas/química , Humanos , Polímeros , Seda
8.
J Hazard Mater ; 427: 127884, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863570

RESUMO

Chemical warfare agents (CWAs) are toxic materials that cause death by contact with the skin or by respiration. Although studies on detoxification of CWAs have been intensively conducted, studies that block CWAs permeation are rare. In this study, for blocking CWAs, a multilayer thin film composed of linear polyethylenimine (LPEI) and graphene oxide (GO) is simply prepared through a spray-assisted Layer-by-Layer (LbL) assembly process. LPEI could change its morphology dependent on pH, which is known as a representative hydrogen donor and acceptor. By controlling the shape of the polymer chain, a heterogenous film could have a loose or dense inner structure. CWAs mainly move through diffusion and have hydrogen bonding sites. Therefore, the heterogeneous film can limit CWAs movement based on controlling pathways and hydrogen bonds within the film. The protective effect of this membrane is investigated using dimethyl methylphosphonate (DMMP), a nerve gas simulant. DMMP vapor transmittance rate (DVTR) and N2 permeance of LPEI/GO are 67.91 g/m2 day and 34,293.04 GPU. It means that the protection efficiency is 72.65%. Although this membrane has a thin thickness (100 nm), it shows a high protective effect with good breathability. And water/DMMP selectivity of the membrane is 66.63. Since this multilayer membrane shows efficient protection performance with a simple preparation method, it has a high potential for applications such as protective suits and masks.


Assuntos
Substâncias para a Guerra Química , Grafite , Ligação de Hidrogênio , Polímeros
9.
Biomaterials ; 278: 121155, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34607049

RESUMO

Cell cultured meat is artificial meat obtained by culturing animal-derived cells in vitro, and received significant attention as an emerging future protein source. The mass proliferation of cells in the cultured meat production is a strenuous process that delays the commercialization of cultured meat because it requires an expensive culture medium for a long period. Herein, we report on a strategy to develop advanced cultured meat using fish gelatin mass growth-inducing culture (MAGIC) powder and myoblast sheets. The MAGIC powder had an edible gelatin microsphere (GMS) structure and exhibited different morphologies and bonding activities depending on the degree of crosslinking. We analyzed the loading and release of nutrients for each GMS with diverse surface properties, and selected the most effective GMSs to improve the proliferation of myoblasts under serum-reduced medium. The GMSs exerted four significant functions in the culture of myoblast sheets, and consequently produced cost- and time-effective meat-like cell sheets than the conventional method. We prepared cultured meats composed of cell sheet containing GMSs and evaluated the quality of the cultured meat by comparing the tissue properties with soy meat and chicken breast.


Assuntos
Gelatina , Carne , Animais , Análise Custo-Benefício , Carne/análise , Nutrientes , Pós
10.
Chem Eng J ; 426: 130763, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131388

RESUMO

Infectious pollutants bioaerosols can threaten human public health. In particular, the indoor environment provides a unique exposure situation to induce infection through airborne transmission like SARS-CoV-2. To prevent the infection from spreading, personal protective equipment or indoor air purification is necessary. However, it has been discovered that the conventional filter can become contaminated by pathogen-containing aerosols, meaning that advanced filtering and self-sterilization systems are required. Here, we fabricate a multilayered nanocoating around the fabric using laponite (LAP) with Cu2+ ions (LAP-Cu2+ nanocoating) two contradictory functions in one system: trapping proteinaceous pathogens and antibacterial effect. Due to the strong LAP-protein interaction, albumin and spike protein (S-protein) are trapped into the fabric when proteins are sprayed using a nebulizer. The protein-blocking performance of the nanocoated fabric is 9.55-fold higher than bare fabric. These trapping capacities are retained after rinsing and repeated adsorption cycles, showing reproducibility for air filtration. Even though the protein-binding occurred, the LAP-Cu2+ fabric indicates antibacterial effect. LAP-Cu2+ fabric has an equivalent air and water transmittance rate to that of bare fabric with a stability under physiological environment. Therefore, given its excellent "Spear-and-shield" functions, the proposed LAP-Cu2+ fabric shows great potential for use in filter and masks during the viral pandemic.

11.
Sci Rep ; 9(1): 2754, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808924

RESUMO

The oxygen barrier properties are essential for the food packaging systems that preserve perishable food. In this research, the facile surface modification method for oxygen barrier properties is introduced by using spray assisted layer-by-layer (LbL) self-assembly. The nano-sized graphene oxide (GO-) multilayer films were developed and characterized. Positively charged amine-functionalized GO+ was synthesized using the negatively charged GO- dispersion, ethylenediamine, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide (EDC). Alternating layers of GO- and GO+ were deposited onto the flexible polyethylene (PE) substrate which has no intrinsic gas barrier properties. This method is able to modify surfaces which are challenging for the conventional dipping LbL method. The oxygen transmittance rate of coated PE film (3511.5 cc/m2·day) decreased significantly to 1091 cc/m2·day after a GO film with a thickness of only 60 nm was deposited. The light transmittance in the visible light range was not significantly decreased after coating of GO films, thus ensuring transparency for PE packaging applications.

12.
ACS Biomater Sci Eng ; 5(3): 1378-1383, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405613

RESUMO

Nitric oxide (NO) participates in various physiological and pathophysiological processes, for example, as a cell messenger and as an antimicrobial agent of the cell-mediated immune response. The development of NO-releasing materials to carry and deliver NO for biomedical applications has gained immense attention. NO-releasing perfluorooctane (PFO) microemulsion (ME) has been prepared using a simple and time-saving method. Perfluorocarbon (PFC) liquids are halogen-substituted carbon nonpolar oils with enhanced NO gas dissolution capacity. The solubility of NO in PFC liquids is higher than that in water-based fluids. Liquid-gas solubility is governed by Henry's Law. The cytotoxicity of the NO-unloaded and NO-loaded PFO MEs toward human dermal fibroblast (HDF) was evaluated. The results showed that the NO-loaded PFO ME was highly biocompatible. On the other hand, at high concentrations the NO-releasing PFO ME accelerated the bacteria (Staphylococcus aureus) death unlike the NO-unloaded PFO ME. Hence, NO-releasing PFO MEs are suitable for biomedical applications such as wound healing and antibacterial agents.

14.
Biomacromolecules ; 19(7): 3096-3103, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894631

RESUMO

Many studies of drug delivery nanoplatforms have explored drug loading affinity and controlled release. The nanoplatforms can be influenced by their inherent building blocks. Natural polypeptide silk fibroin (SF) is an excellent nanoplatform material because of its high biocompatibility and unique structural properties. SF secondary structures have different properties that can be changed by external stimuli. Thus, the characterization of SF-containing platforms is strongly affected by secondary structure transformations. Structural changes can occur spontaneously, which hinders the control of structural variation in aqueous conditions. Herein, we successfully prepared a controllable secondary structure composed of SF/heparin (HEP) layer-by-layer assembled nanofilms using simple solvents (glycerol and methanol). SF in the SF/HEP nanofilms takes up than 90%, which means configurations of SF have a strong effect on the character of the nanofilms. We investigated the degradation profiles of SF/HEP nanofilms depending on their ß-sheet contents and demonstrated an immediate correlation between the transformation of secondary structures inside the nanofilms and the degree of degradation of nanofilms. Finally, SF/HEP nanofilms were used as a delivery platform for incorporating the anticancer drug epirubicin (EPI). We could control the loading efficiency and release profile of EPI with various ß-sheet contents of the nanofilms.


Assuntos
Fibroínas/química , Nanoconjugados/química , Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Epirubicina/administração & dosagem , Células HeLa , Heparina/química , Humanos , Membranas Artificiais , Conformação Proteica em Folha beta
15.
ACS Appl Mater Interfaces ; 10(21): 17685-17692, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29741355

RESUMO

Layer-by-layer (LbL) assembly techniques have been extensively studied in cell biology because of their simplicity of preparation and versatility. The applications of the LbL platform technology using polysaccharides, silicon, and graphene have been investigated. However, the applications of the above-mentioned technology using living cells remain to be fully understood. This study demonstrates a living cell-based LbL platform using various types of living cells. In addition, it confirms that the surplus charge on the outer surface of the coated cells can be used to bind the target protein. We develop a living cell-based LbL platform technology by stacking layers of hyaluronic acid (HA) and poly-l-lysine (PLL). The HA/PLL stacking results in three bilayers with a thickness of 4 ± 1 nm on the cell surface. Furthermore, the multilayer nanofilms on the cells are completely degraded after 3 days of the application of the LbL method. We also evaluate and visualize three bilayers of the nanofilm on adherent (AML-12 cells)-, nonadherent (trypsin-treated AML-12 cells)-, and circulation type [peripheral blood mononuclear cells (PBMCs)] cells by analyzing the zeta potential, cell viability, and imaging via scanning electron microscopy and confocal microscopy. Finally, we study the cytotoxicity of the nanofilm and characteristic functions of the immune cells after the nanofilm coating. The multilayer nanofilms are not acutely cytotoxic and did not inhibit the immune response of the PBMCs against stimulant. We conclude that a two bilayer nanofilm would be ideal for further study in any cell type. The living cell-based LbL platform is expected to be useful for a variety of applications in cell biology.


Assuntos
Nanoestruturas , Membrana Celular , Sobrevivência Celular , Ácido Hialurônico , Leucócitos Mononucleares , Proteínas
16.
Sci Rep ; 7(1): 6318, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740226

RESUMO

High-throughput drug screening based on a multi-component array can be used to identify a variety of interaction between cells and drugs for suitable purposes. The signaling of immune cells is affected by specific proteins, diverse drug combinations, and certain immunosuppressive drugs. The effect of a drug on an organism is usually complex and involves interactions at multiple levels. Herein, we developed a multilayer fabricating system through the high-throughput assembly of nanofilms with inkjet printing to investigate the effects of immunosuppressive drugs. Immunosuppressive drugs or agents occasionally cause side effects depending on drug combinations or a patient's condition. By incorporating various drug combinations for understanding interaction between drugs and immune cells, we were able to develop an immunological drug screening kit with immunosuppressive drugs. Moreover, the ability to control the combination of drugs, as well as their potential for high-throughput preparation should be of great benefit to the biomedical and bioanalytical field.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Imunossupressores/farmacologia , Linfócitos T/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Quimioterapia Combinada , Humanos , Nanotecnologia , Impressão , Kit de Reagentes para Diagnóstico , Sirolimo/farmacologia , Linfócitos T/imunologia
17.
Adv Healthc Mater ; 6(14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28436215

RESUMO

Biologically versatile basic fibroblast growth factor (bFGF), well known for roles of signaling molecules between cells and regulating various cellular processes, has been proven to utilize specific functionalities. However, the remarkable functions are inclinable to dwindle with decrease of bFGFs' activity. In nanoscale, developing thin films with intrinsic characteristics of building molecules can facilitate handling various materials for desired purposes. Fabricating nanofilm and handling sensitive materials without detriment to activity via highly productive manufacturing are significant for practical uses in the field of biomedical applications. Herein, a multilayered nanofilm fabricating system is developed by inkjet printing to incorporate bFGF successfully. It is demonstrated that water mixed with glycerol as biological ink maintains stability of bFGFs through simulation and experimental study. With highly stable bFGFs, the proliferation of human dermal fibroblast is enhanced and the undifferentiated state of induced pluripotent stem cell is maintained by the controlled release of bFGF.


Assuntos
Fator 2 de Crescimento de Fibroblastos/química , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Membranas Artificiais , Nanoestruturas/química , Fibroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
18.
Sci Rep ; 7(1): 456, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28352120

RESUMO

Separation of CO2 from other gasses offers environmental benefits since CO2 gas is the main contributor to global warming. Recently, graphene oxide (GO) based gas separation membranes are of interest due to their selective barrier properties. However, maintaining selectivity without sacrificing permeance is still challenging. Herein, we described the preparation and characterization of nanoscale GO membranes for CO2 separation with both high selectivity and permeance. The internal structure and thickness of the GO membranes were controlled by layer-by-layer (LbL) self-assembly. Polyelectrolyte layers are used as the supporting matrix and for facilitating CO2 transport. Enhanced gas separation was achieved by adjusting pH of the GO solutions and by varying the number of GO layers to provide a pathway for CO2 molecules. Separation performance strongly depends on the number of GO bilayers. The surfaces of the multilayered GO and polyelectrolyte films are characterized by atomic force microscopy and scanning electron microscopy. The (poly (diallyldimethylammonium chloride) (PDAC)/polystyrene sulfonate (PSS)) (GO/GO) multilayer membranes show a maximum CO2/N2 selectivity of 15.3 and a CO2 permeance of 1175.0 GPU. LbL-assembled GO membranes are shown to be effective candidates for CO2 separation based on their excellent CO2/N2 separation performance.

19.
ACS Biomater Sci Eng ; 3(6): 870-874, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429558

RESUMO

Thin films including biocompatible polymers and biological materials as building blocks can be produced with a variety of critical film characteristics, including various materials, thicknesses, roughnesses, amounts of compound released, and release rates for biomedical purposes. We developed a multilayer fabrication system via high-throughput layer-by-layer (LbL) assembly of a nanofilm with inkjet printing to facilitate practical biomedical applications. Our system was used to generate biomolecule (ovalbumin and basic fibroblast growth factor)-containing printed LbL films. This is the first demonstration of the clinical benefits of nanofilm-type nanobiomaterials based on molecular organization, suggesting that novel therapeutic human skin patches could be realized without the need for conventional surgical practices.

20.
Sci Rep ; 6: 35565, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752120

RESUMO

Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications - a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA